Toward Large-Scale Agent Guidance in an Urban Taxi Service

نویسندگان

  • Lucas Agussurja
  • Hoong Chuin Lau
چکیده

Empty taxi cruising represents a wastage of resources in the context of urban taxi services. In this work, we seek to minimize such wastage. An analysis of a large trace of taxi operations reveals that the services’ inefficiency is caused by drivers’ greedy cruising behavior. We model the existing system as a continuous time Markov chain. To address the problem, we propose that each taxi be equipped with an intelligent agent that will guide the driver when cruising for passengers. Then, drawing from AI literature on multiagent planning, we explore two possible ways to compute such guidance. The first formulation assumes fully cooperative drivers. This allows us, in principle, to compute systemwide optimal cruising policy. This is modeled as a Markov decision process. The second formulation assumes rational drivers, seeking to maximize their own profit. This is modeled as a stochastic congestion game, a specialization of stochastic games. Nash equilibrium policy is proposed as the solution to the game, where no driver has the incentive to singly deviate from it. Empirical result shows that both formulations improve the efficiency of the service significantly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the Efficiency of Urban Taxi Service System

The taxi service systems in big cities are immensely complex due to the interaction and self-organization between taxi drivers and passengers. An inefficient taxi service system leads to more empty trips for drivers and longer waiting time for passengers, and introduces unnecessary congestion to road network. Although understanding the performance of urban taxi service system is important, the ...

متن کامل

The impact of rainfall on the temporal and spatial distribution of taxi passengers

This paper focuses on the impact of rainfall on the temporal and spatial distribution of taxi passengers. The main objective is to provide guidance for taxi scheduling on rainy days. To this end, we take the occupied and empty states of taxis as units of analysis. By matching a taxi's GPS data to its taximeter data, we can obtain the taxi's operational time and the taxi driver's income from eve...

متن کامل

Decentralized decision support for an agent population in dynamic and uncertain domains

This research is motivated by problems in urban transportation and labor mobility, where the agent flow is dynamic, non-deterministic and on a large scale. In such domains, even though the individual agents do not have an identity of their own and do not explicitly impact other agents, they have implicit interactions with other agents. While there has been much research in handling such implici...

متن کامل

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

Utilizing Taxi Empty Cruise Time to Solve the Short Distance Trip Problem

Short distance trips are crucial for urban mobility and accessibility. They can contribute to integrated transportation (the “last mile” problem), and more generally to urban ad-hoc ride sharing scenarios [1]. Since no transport provider covers short distance trips where demand arises, private car use is flourishing in recent decades, with all the known disadvantages of traffic congestions, res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012